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AbstracL We investigate the possibility of constructing bicovarimt differential calculi on 
quantum groups SO, (N)  and Spq(N) as a quantization of an underlying bicovariant bracket. 
We show that, in contrast to the G L ( N )  and S L ( N )  cases. neither of the possible graded 
SO and Sp bicovariant brackets (associated with a quasitrianguIar r-matrices) obey the Jacobi 
identity when the differential forms are Lie algebra-valued. The absence of a classical Poisson 
stntcmre gives an indication that differential algebras describing bicovariant differential calculi 
On quanNm orthogonal and symplectic groups are not of Poinc&Bikhoff-Wltl type. 

The bicovariant differential calculus (BDC) for quantum groups initiated by Woronowicz’s [I] 
provides a meaningful example of noncommutative differential geometry [2 ] .  On the other 
hand, it also serves as the s w n g  point for formulating a new class of gauge theories with 
a simple quantum group playing the role of a gauge group [3,4]. Many of the phenomena, 
which one can encounter studying these theories have their origin in the theory of BDC. Thus, 
it is extremely important to investigate the general properties of BDC for simple quantum 
groups. 

In this paper we aim to find’whether extemal algebras on quantum groups SO#) and 
S p , ( N )  are of PoincarGBirkhoff-Witt (PBW) type, i.e. whether they possess a unique basis 
of lexicographically ordered monomials. This is not an’ academic question. since it has a 
strong influence on all differential geometry associated with these groups. In particular, if 
the PBW property is absent under quantization the classical system and its corresponding 
quantum system will have a different number of observables. 

Our consideration is based on the R-matrix approach of [5], which is very useful in 
dealing with BDCS. 

Recall that the central point of Woronowicz’s theory~is the construction of bicovariant 
bimodules r over a Hopf algebra A (the algebra of functions on a quantum group). The 
bimodules over A supplied with two coactions: 

A R : r + r c o A  and AL: r -+ A D  l- (1) 
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satisfying the set of axioms [l]. Bicovariant bimodules are interpreted as noncommutative of 
tensor bundles rcl over Lie groups. For the case of simple quantum groups the classification 
of bicovariant bimodules was obtained in [6] and confirmed in 171. 

A first-order differential calculus is defined as a pair (r, d), where differential d: A + r 
is a nilpotent mapping obeying the Leibnitz rule. 

The bicovariant wedge product of two left-imvariant 1-forms Q j  is defined via tensor 
algebra construction: 

G E Amtuymv et a1 

(2)  IY $2{ A $2j = @A Qj - Ujj $21 @A Qk 

or, in concise matrix notation, 

Q I  A a2 = (112 - S Z ) Q 1  @d n2. (3) 

Here matrix uIz satisfies the Yang-Baxter equation (YBE) [l]: 

u23u12u23 = u112u23u12 (4) 

which provides the associativity of the wedge product: 

(Q, A nz) A S& = Q I  A A Q3). (5) 

Therefore, adopting (2). (3) one can construct, starting from r, an associative external 
algebra r" = E, r("), where r(') = A, r(') = r and r(") is the space of n-forms. It 
is proved [l] that a first-order differential calculus can be lifted to higher-order differential 
forms via extending r by an additional bi-invariant 1-form X generating d dQ = [X, Q],, 

However, let us stress that YBE (4) does not guarantee that r" constructed in such a 
way is a PBW-type algebra. From the point of view of general BDC theory [l] the fulfilment 
of the PBW property for quantum external algebras is an additional physical requirement. 

The general properties of 0 for quantum simple Lie groups (in particular, the projector 
expansion) were studied in [8,9].  In [SI the authors modified definition (2) by imposing the 
additional quadratic relations on the generators Q j  (we will comment on this later). The 
direct investigation of the PBW property for (2) is rather involved and, to our knowledge, 
it has been tackled only for the external algebras on GL,(N) and SL,(N) [10-12]. 
Fortunately, for quantum groups SO,(N)  and Sp,(N)(N = 2n), one can exploit the ideas in 
[14,15] that the quantum groups can be obtained by quantizing classical Poisson structures 
and trying to answer the question about the PEW property, on the semiclassical level only. 
This is due to the existence of the infinitesimal version of bicovariant differential calculi 
on the quantum, groups provided by graded bicovariant brackets [16] which can be deduced 
directly as a semiclassical l i t  of the PEW algebras presented in [11-13]. In this approach, 
it is assumed that the anticommutator in r is determined, in the semiclassical approximation, 
by a graded bracket on ret: 

Q E r". 

Q A Q' + n' A B  = k{n, 0') +R'(...) (6) 

satisfying the condition of bicovariance: 

AL,.Q((Q, Q'1) = (AL,R(Q), A L . R ( ~ ' ) ]  Q, a' E r:!. (7) 
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The coactions A L : ~  --f A @  r and A R : ~  --f r Q A coming in (7) are the classical 
analogues of (1). On the matrix elements j = 1,2, ..:, N )  of the Lie-valued left- 
invariant Cartan's form C2 ($ generates r$) ALJ are defined as 

A~(s2j.) I = IO slj 0j A,q(S$) = 0; Q ( T - ' ) ; q  (T-IS2T); (8) 

and, to an arbitrary element of rd. they are extended as homomorphisms with respect to 
the wedge product. We introduce the matrix element of the groups in (8) and, for the 
sake of simplicity, we omit the signs of the tensor products in the last parts of (8). In the 
following we will refer to the bracket satisfying (7) as bicovariant with respect to the L, 
R-coactions of G. 

To turn r$ into a classical Poisson system we also impose on the graded bracket in (6) 
the following conventional requirements: 

(i) the symmetry condition: 

{ p ,  (} = (_l)deP(P)deP(P')+l{p', 

(ii) the graded Jacobi identity: 

(-l)"gp'd"gm(IPI, ,9zI,ml+ ( - 1 ) d e ~ h d " m ( ( P 3 , , 9 1 J , P Z }  + ( - l )d'8p'd"~h(~,92, ,93}.PI}  = 0 
(9) 

and 
(iii) 

(PI @a, P3 0,941 = (-l)degh"k, ,931 OPzP4+ (-1)deg"'mP~P3 Q {a, ,941. 

In addition we demand (as usual) that this bracket be a graded differentiation: 

{ P I . P ~ A P ~ ]  = ( P I . , ~ ~ ~ A P ~ + ( - I ) ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ Z ~ ~ I P I , P ~ } .  

If a bracket satisfying the above requirements exists, then r$ is said to be equipped with a 
graded Poisson-Lie (PL) structure 1161 and one can consider as a phase space for some 
graded dynamical system. 

Thus, in general, an algebra of quantum external forms is expected to be a graded 
bicovariant algebra with the graded commutator that produces, in the semiclassical limit, 
a graded bicovariant bracket. Now the fact that this algebra is of PBW type leads, in 
semiclassical theory, to the requirement for the corresponding bicovariant bracket to be 
Poisson, i.e. to satisfy the Jacobi identity (here and below we confine ourselves only to a 
consideration of the exterior algebras (2) having the usual classical limit). 

In the cases of G L ( N )  and SL(N) ,  graded PL structures exist [16,17] and the 
corresponding algebras of quantum external forms are of PBW type [11,12]. Moreover, 
if a graded PL structure exists, then bicovariance and the PBW property can be considered 
as main quantization principles. 

Let G be S O ( N )  or S p ( N )  groups and B be the corresponding Lie algebra. The 
following terminology (see [18]) will be useful. A skewsymmetric solution r(f' E BAG) of 
the classical YEJE (cYBE) will be referred to as a triangular r-matrix and a skewsymmetric r 
obeying the modified YBE (mYBE) will be referred to as a quasitriangular one. 
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Our strategy is as follows. It i s  natural to consider a graded PL structure on 
generated by the brackets between the components of 9-valued Cartan's form Q, i.e. when 
Qj = w.(t")i where P E 9. It is shown below (see also [19]) that these brackets are 
defined via a triangular r-matrix. However, this is not for the case of the standard r-matrix 
[IS] associated with simple Lie algebras. In other words, if we employ a quasitriangular r 
(that is relevant for subsequent quantization) and require the G-covariant Poisson bracket 
(QI , 0 2 )  to be an element of 888 (as a matrix), then we get a unique solution (GI,  Qz) = 0 
(see below). One may hope that by discarding the requirement Q E 9 it would be possible 
to obtain a graded bicovariant bracket with a quasitriangular r .  Below we analyse this 
possibility and, hence, assume the general situation when Q E Mat(N, @) - g l ( N ,  @). In 
this case, a covariancy group G of graded brackets on g l ( N )  is a subgroup of G L ( N ) .  
Let us stress that this is in agreement with the quantum external algebra construction [l] 
where dim r(l) = N2. One remark is in order. We will not consider in this paper the graded 
bicovariant brackets which are covariant under the groups isomorphic with the linear groups 
of A,-! series (e.g. SO(3) - Sp(2) -SI,@), see [I91 for discussion). 

Now we recall briefly the basic facts about Lie groups G corresponding to so(N)  or 
s p ( N ) ( N  = 7.n) Lie algebras. The fundamental representation of G is given by 

TCTW = CT'C-IT = I 

where N x N matrix C is C'j = S'j' for S O ( N )  and C'j = E;S'~'  for S p ( N ) ,  i' = N + 1 -i, 
6; = l(i = 1 , .  . . , n),  and E ;  = -1 if (i = n,. . . ,2n). We denote by C"(Cij) the matrix 
elements of C(C-'). 

The fundamental representations of the corresponding Lie algebras are defined as follows 

9 = (X E Mat(N, @)lX' = -CXC-']. 

To simplify the calculations we introduce an operation-acting on Q, 52'. etc, in the 
following way 

si = CQfC-' Q2 = c(Q2)'C-l = -(6)2. (10) 
I 

Clearly, 
that the form Q- belongs to 8 in the fundamental representation. 

is 

= Q. Using this operation~we split matrix-valued forms as Q* = Q rt 6. Note 

It can be shown [20] that the general form of a 2-graded bicovariant bracket {QI, 0 2 )  

IQ1 .Qz} = IQi,  I&, r1211+ + T ~ ~ ~ ( W I Z M Q ~ Q ~ )  (11) 

where r12 is the quasitriangular r-matrix and W1~4 is a G-invariant tensor: 

Wily, = TI T~T~T~WIU~T;~  T<'T;'TL' (12) 

with symmetry properties: 

WIZ34 = w2134 = -wl243. (13) 

Here indices 1, 2, 3 ,4  denote the numbers of the matrix spaces. Thus, to construct a general 
SO- (Sp)-bicovariant bracket we have to enumerate all tensors (13) that are invariant under 



Poincarl-Birkhoff-Wtt proper9 for bicovariant differential algebras 4353 

G-action (12). Classification of all possible  WIZ^^ leads to the following explicit form of 
bracket (11) (the detailed proof of this statcmcnt will be published elsewhere): 

{ G I ,  ~ z }  = [ Q I [ Q ~ .  r1z11+ +X!:)(Q: + Q;) + (6: + f2;)xf;) + (f2Ixg)a1 + f 2 2 ~ ~ 3 2 z )  

+ ( f 2 l x g n z  + f2Zx;)Ql) + xg)(nlf2, + Qzf2z) 

+ (X$)(fil + f22) + (a, + ndxg) trn (14) 

where all X(') are symmetric G-invariant matrices in Mat@" C) x Mat(N, C): 

Xg) =ai l  + biP + ciKo 

and ai, bj. ci are complex numbers, I is the identity matrix, P is a permutation matrix and 
KO: (KO);: = C*'Cij. 

Due ib the identities 

KPzG?i = KPzf22 KPZQz = KPzf2] (15) 

we find that K & ( Q l f i ~  + QZhz) = 0, i.e. we can put c5 = 0 and, therefore,'the bracket 
(14) depends on 20arbitrary parameters ai, bj, ci. In fact this number coincides with the 
dimension of the cohomology group Ho(G,  S V B h V ) ,  where V = Mat(N, C) and SV(AV) 
stands for the symmetric (antisymmetric) p a t  of V @ V .  We note that operators X( ' )  have 
the matrix structure of Yangian R-matrices. 

Having the general form (14) one can calculate the bracket between the variables a*. 
For this purpose one needs explicit expressions for (f21, Qz] and {Ql,  dz} that are obtained 
from (14) by acting with - in the first or second matrix spaces. Now if weiake into account 
that 
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where 
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= biz .  ru + ml + h ,  rul. (20) 

If r12 is a quasitriangular r-matrix (C(r) # 0 is ad-invariant tensor), i.e. r l ~  is a solution 
of the mYBE (ZO), then the related bracket (18) is non-Poisson (see (19)). Correspondingly, 
if rlz is a triangular r-mahx (CO) = ~ O  in equation (ZO)), then the bracket (IS) is Poisson. 
These statements agree with the results of [19]. 

Before considering the general bracket (14) we recall how the exterior derivative 
d comes into this scheme. If we relate in the quantum case the co-invariant element 
X of Woronowicz with the quantum trace tr,a (the definition of the q-trace see in 
[5,21,13,4,22]), then semiclassically it means that the ordiniuy exterior derivative d is 
expressed via the corresponding bicovariant bracket: 

(21) 

where K is some numerical parameter depending on a bracket under consideration. The 
fulfilment of the nilpotency condition: dz = 0 is equivalent to the identity: 

1 d = -(trn,. . .) 
K 

{{a, @a), trn) = 0 (22) 

and the Leibnitz rule is guaranteed by 

II~l,~zl,tr~l+~I~l,~n~,nzl-~~l,~nz,trnl~=o. (23) 

Bracket (14) satisfying (22) and (23) will be referred to as differential. If (14) satisfy the 
Jacobi identity (9) then (22) and (23) are fulfilled automatically. It is worth noting that 
trC2((tr52)2 = 0) looks like a BRST charge. 

First, we find all differential brackets. From (14) one can extract the general forms 

and 

where 

P I  = 2b1 + E C I  - ECZ + ec4 + Nal 

PZ = -CCI + ECZ + E C ~  + 2b2 -+ Na2 

p3 = 6c3 +b3 +2b4 + Na3 

P+ = E C ~  - b3 + 2bs + Nas 

P5 

F6=  - a 4 f N a 7 + 2 b 7 f E ( c 6 f C 7 ) .  

a4 f Na6 f 2b6 + €(C6 + C7)  

Substitution of (26) in (22) gives four solutions for coeflicients p: 
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(i) pi = p. p2 = p? = p4 = v ,  ps = p6 = 0, where p, U are arbitrary numbers except 

(ii) PI = PZ = -p? = -p4 # 0, ps = p6 = 0; 
(iii) ps =~-p6 = a4 # 0, bLi = 0 (i = 1,. . . ,4); 
(iv) pi = 0 (i = 1, . . . ,6) .  

Thus, for bracket (24) (for (25) respectively) we have four possibilities: 

(i) {Q, t r ~ ]  = paz + v ( b 2  + 6~ + nb) 
(ii) {Q, t r ~ )  = p(n2 + bz - - ab) (p 01, 
(iii) {Q, trQ] = p(h -~Q) t r ~  

(iv) {Q,trS2] =O.  

@ = U = &  

. 
(for all p, U except p = U = 01, 

(27) 
(p = 4 # 01, 

The next step is to impose identity (23) proving the Leibnitz rule for the differential d 
(21). This was done by using the symbolic manipulation program REDUCE. The resulting 
differential bicovariant brackets are presented in the appendix. 

Now substituting the calculated coefficients in (14) and analysing the identity (9) with 
the help of the REDUCE program, we arrive at the conclusion that neither of the nonhivial 
differential brackets is Poisson. Thus, among the family (14) of bicovariant brackets 
there are differential brackets but no Poisson brackets. Note that we essentially use the 
requirement that the as lie in the algebras: (1) so(N),  sp(2n) or in (2) g l ( N )  = Mat(N). 
In the first case we have an additional relation on the generators Q' = 0. We slre.ss that 
if we consider some other relations (cubic relations or QIQZK:, = -KP2Q~Q2),  then the 
Poisson structure can exist. 

Now we analyse the external bicovariant algebra (3) on quantum groups SO,(N)  and 
Sp4(N) directly in quantum case. For these q-groups the R-matrix satisfies the cubic 
characteristic equation [5]: 

(28) 

where v = cqcMN, A = q - q-I, R = 812 = P12R12 and the matrix K = Klz = K?' = 
C'1"Cj,i2 is proportional to the singlet projector No): 

(29) 

1 
AV 

R = R-' + A - A K  K - - ( R ~ - A R  - 1) 

11 J2 

P" = p-'K p = (1 + E [ N  - el4). 
Note that this time C is a quantum matrix [5]. Below we also~use the projectors: 

It has been shown in [8,9] that for differential I-forms one has the following relations 
coming from definition (3): 

(31) X(**) = p(*)Q'RQ'p(*) = 0 = p(o)n'RQ'p(O' = 0, 

Here Q' = I @ Q = Qz and the signs of the wedge products are omitted. Taking the 
following sum 
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and using the identities 
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P++P- --A - 
4+4-' P 4 + 4-1 P 

-4P+ - 4-'P- = -: 

one can show that relations (31) are equivalent to the unique relation: 

1 
P P 

(RQ'RQ'R + Q'RQO - -(KQ'RQ"+ Q'RQ'K) - L(KQ'RQ'R + RQ'RQJK) = 0. 

(33) 

(34) 

This form for the defining relations for I"' is suitable for producing a graded bicovariant 
bracket on Fa. 

The semiclassical expansions of projector Pg) and R-matrix are: 

c 
PI2 (O) - - B'O) 12 +h-K N :2 + O(5') Riz = Pi2 + hPizPiz + O(hz) 

where P,$) = (e/N)KY, and P satisfies CYBE. It follows from K R  = R K  = IJK that in the 
first order in h: 

Then, by expanding (34) in powers of A, taking into account (35) and the correspondence 
(6), we obtain 

(36) ( r  - P,(?)({Q~, n2) + G ~ ~ )  - (m, Q ~ I  + G ~ ~ ) B ~  = o 
where 

GIZ = -[QI, 1% r~zll++Piz(Q?+Q:) -E(KIzQIQz+QIQzKIZ+QI K I Z Q Z ~ Q Z K I Z Q I )  

(37) 

and we made use of the quasitriangular r-matrix: r = F - ( P  - E K ) .  
The components P$){QI, Q z ] ( l  - >$)) are not defined by (36). Thus, we see that 

relations (31) are insufficient to generate, in the limit h + 0, a genuine bicovariant bracket. 
In the quantum case it means that the number of defining relations (31) is not enough to 
reorder the lexicographically arbitrary monomial in a,. Therefore, if we confine ourselves 
only to (31). then we cannot conclude that dimr" is equal to dimr;. 

On the other hand, we cannot assume the solution of (36) to be 

IQi, Qz) = -GI, (38) 

since Glz is symmetric under 1 cf 2 only if the following relation holds: 

KizQiQz + Q I Q Z K I Z  = 0. (39) 

But this relation contradicts the requirement that Q' E B or that the number of Q, are 
NZ(Q E Mat(N)). Note, however, that the bracket (38) is Poissonian for Q, restricted by 
constraint (39). 
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To improve the situation the authors of [SI, in addition to (31), have assumed the 
relations (in the SOq(N)-case): 

(40) X@t) = p @ ) $ R G f p ( + )  = 0 ‘X(+o) = p(+)Q’RQ’p(o) = 0. 

One can obtain without problems that (34) and (40) are equivalent to the relation: 

1 
w 

RQ’RQ’R + Q’RQ‘ + --(wq-’ - I)(KQ’Rn’ + Q‘RQ’K) = 0. (41) 

By expanding (41) in k ,  as was done for the general relation (34), we get the following 
bicovariant bracket: 

IQ,, QZI = I Q ] ,  In,, r d l +  - P ~ Q :  + at) + ( Q I K ~ ~ ~ Z  + ~ 2 ~ 1 2 ~ 1 ) .  (42) 

as a particular case of (14). Now we see that, according to our classification, this bracket 
is neither Poissonian nor differential. This means in the quantum case that the requirement 
d2 = 0 (22) implies some additional cubic relations on generators Qj, which were not 
assumed from the beginning. The situation is somewhat improved when we require d2 = 0 
only on the ‘physical’ components S2 = Q-. This requirement is consistent with (22), since 
[a-, tr R} = -2(Q-)2. However, the substitution R + R- in (23) leads to the conclusion: 

I(Q2;,Q;l,trQ}+IIQ;,trQl,Q;}-IQ;, In;,trQH f 0 .  

Thus, one cannot assume the Leibnitz rule for d on the ‘physical‘ subalgebra generated by 
Q- without imposing new cubic relations on ns. Note that if’we impose the unacceptable 
relations (39), then bracket (42) coincides with (38) and, therefore, is Poissonian. 

Seemingly, the absence of a bicovariant Poisson structure for S O ( N )  and S p ( N )  (N is 
generic) reflects the fact that we cannot confine ourselves by considering only G-invariant 
tensors W in (11). Considering in (11) tensor W which is not G-invariant, we disturb the 
bicovariance but may hope to keep the Jacobi identity. Then we expect that the bicovariance 
will be restored on the surface at = 0 if we treat Q+ = 0 as the first-order constraint (in 
the Dirac sense). 
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Appendix. Differential SO- and sp-covariant brackets on Mat(N) 

First solution: (Q, trQ} = fiQz +U(@ +.fin + Rfi) 
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